
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Results in Physics 21 (2021) 103776

Available online 6 January 2021
2211-3797/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

A mathematical model of Coronavirus Disease (COVID-19) containing 
asymptomatic and symptomatic classes☆ 

Idris Ahmed a,b, Goni Umar Modu c, Abdullahi Yusuf d,e, Poom Kumam b,f,*, Ibrahim Yusuf g 

a Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thung Khru, 
Bangkok 10140, Thailand 
b KMUTTFixed Point Research Laboratory, Fixed Point Theory and Applications Research Group, Center of Excellence in Theoretical and Computational Science (TaCS- 
CoE), Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand 
c Department of Statistics, Ramat Polytechnic Maiduguri, P. M. B 1070 Maiduguri, Borno State, Nigeria 
d Department of Computer Engineering, Biruni University, Istanbul 34010, Turkey 
e Department of Mathematics, Federal University Dutse, Jigawa 7156, Nigeria 
f Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan 
g Department of Mathematical Sciences, Bayero University Kano, P. M. B. 3011 Kano, Nigeria   

A R T I C L E  I N F O   

Keywords: 
Corona virus 
Basic reproductive number 
Nonlinear differential equations 
ABC-fractional operator 
Mathematical model 
Existence and uniqueness 
Sensitivity analysis 
2010 MSC: 
47H10 
34A12 
39A30 

A B S T R A C T   

The research work in this paper attempts to describe the outbreak of Coronavirus Disease 2019 (COVID-19) with 
the help of a mathematical model using both the Ordinary Differential Equation (ODE) and Fractional Differ-
ential Equation. The spread of the disease has been on the increase across the globe for some time with no end in 
sight. The research used the data of COVID-19 cases in Nigeria for the numerical simulation which has been fitted 
to the model. We brought in the consideration of both asymptomatic and symptomatic infected individuals with 
the fact that an exposed individual is either sent to quarantine first or move to one of the infected classes with the 
possibility that susceptible individual can also move to quarantined class directly. It was found that the proposed 
model has two equilibrium points; the disease-free equilibrium point (DFE) and the endemic equilibrium point 
(E1). Stability analysis of the equilibrium points shows (E0) is locally asymptotically stable whenever the basic 
reproduction number, R 0 < 1 and (E1) is globally asymptotically stable whenever R 0 > 1. Sensitivity analysis of 
the parameters in the R 0 was conducted and the profile of each state variable was also depicted using the fitted 
values of the parameters showing the spread of the disease. The most sensitive parameters in the R 0 are the 
contact rate between susceptible individuals and the rate of transfer of individuals from exposed class to 
symptomatically infected class. Moreover, the basic reproduction number for the data is calculated as 
R 0 ≈ 1.7031. Existence and uniqueness of solution established via the technique of fixed point theorem. Also, 
using the least square curve fitting method together with the fminsearch function in the MATLAB optimization 
toolbox, we obtain the best values for some of the unknown biological parameters involved in the proposed 
model. Furthermore, we solved the fractional model numerically using the Atangana-Toufik numerical scheme 
and presenting different forms of graphical results that can be useful in minimizing the infection.   

1. Introduction 

A mathematical model is a description of the workings of the real 
world employing mathematical symbols, equations, and formulas. 

Mathematical models are commonly used in many fields, such as med-
icine [39], agriculture [25,47], management and social sciences [41] 
and references cited therein. Such models can either be linear or 
nonlinear, stochastic or deterministic. In the health sector, 
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mathematical models have been used to forecast disease outbreaks, 
avoid or cure these illnesses. Currently, there are many mathematical 
models used to explain disease processes and they can be found in books 
dedicated to mathematical models in biology and medicine, for more 
details, refer the reader to [10,18,26,35]. By the end of December 2019, 
the world’s deadly coronavirus pandemic, popularly known as COVID- 
19, erupted in the ancient town of Wuhan Hubei Province, China 
spreading almost through several countries in 2020 [2]. Several unex-
plained cases of cough, pneumonia, dyspnea, exhaustion and there were 
fever in Wuhan, China, for a short period. The arrival of COVID-19 
resulted in the closure of business, schools, markets, traveling within 
and outside, intermingle, curfew, lockdown, reduction of gathering to 
mention but a few [3]. 

Nigeria has fallen into the category of nations affected by the coro-
navirus pandemic. February 27, 2020, culminated in the arrival of the 
pioneer case of COVID-19 in Lagos state southwestern Nigeria when an 
Italian citizen arrived on 24 February and presented at a health facility 
on 26 February 2020 (see Fig. 1.1) [1]. Before the arrival of COVID-19 
into Nigeria, the Federal government with some states in Nigeria 
established various medical agencies and isolation centers to handle and 
stop the spread of the pandemic. The Federal government through its 
Nigeria Center for Disease Control (NCDC) provide appropriate public 
health advice to Nigerians, on the symptoms, dissemination, and pre-
vention of information with national and sub-national networks of 
public health staff, built capacity for contact tracing and case manage-
ment and strengthened some laboratories for diagnostic activities of the 
pandemic. 

With the arrival of COVID-19, researchers have been using and 
formulating mathematical models as a technique in gaining insight into 
the mode of spread of the pandemic, transmission, impact of the 
pandemic, prevention and control of the pandemic, the influence of 
preventive measure on the pandemic ranging from washing hands with a 
disinfectant such as a hand sanitizer, 2 to 5 meters social distance and 
use of face mask, see the recent literature 
[20,33,34,36,43,48,50,53–55]. Okuonghae and Omame [38] analyzed 
the spread and behavior of COVID-19 in Lagos, Nigeria. Roseline et al. 
[37] used the linear regression method to modeled the rate of fatality of 
the pandemic in Nigeria. Adegboye et al. [6] dealt with early spread of 
COVID-19 in Nigeria. Ajisegiri et al. [9] analyzed the outbreak scenario 
of COVID-19 in Nigeria. Researchers in different areas have presented 
excellent research on preventive and curative steps to contain the 
pandemic and have reported better outcomes. However, a further re-
view of the latest form of models with a justified and satisfactory eval-
uation is required. 

In all of the research cited above, the models presented therein were 
based On classical derivatives with some restrictions on the order of 
differential equations involved. To overcome these limitations, several 

researchers have sought the aid of a rapidly growing field of mathe-
matics known as fractional calculus. The differential operators used in 
fractional calculus are non-integer or fractional order, which have 
memory features and are useful in demonstrating many natural phe-
nomena and facts having non-local dynamics behavior. The concept of 
fractional order has gained significant attention due to its wide-ranging 
advances and various applications in knowledge areas, see 
[13,14,21,22,32,40]. Recently, Atangana and Baleanu [16] proposed a 
new fractional derivative operator with a nonsingular and Mittag-Leffer 
kernel. The main advantage of the operator is that it has a nonlocal and 
nonsingular kernel. More recently, new advances and studies in frac-
tional differential equations has been published from a mathematical 
modeling point of view, see recent papers 
[4,7,8,11,12,15,19,27–30,44,46,52]. 

The paper is organized as follows: In Section 2, we formulated the 
model together with the description of the parameters defined in the 
model. In Section 3, we obtain the invariant region. Also, we compute 
the basic reproduction number and study it is disease-free equilibrium 
(DFE), local stability, the existence of endemic equilibrium, local sta-
bility of the endemic equilibrium, and global stability of the endemic 
equilibrium. The existence and uniqueness of solutions were investi-
gated via the techniques of fixed point theorems in Section 4. In Section 
5, we present the model fitting as well as the estimation of the param-
eters. Besides, sensitivity analysis and numerical simulation are also 
highlighted. Finally, we give the conclusion of the paper in Section 6. 

2. Model formulation 

In this research paper, a model of the coronavirus (COVID-19) dis-
ease using simple rates of transmission is considered. Let N(t) be the 
total population of human. This population is divided into seven classes: 
susceptible individuals S(t), exposed individuals E(t), asymptotically 
infected individuals IA(t), symptomatic infected individuals IS(t), quar-
antined individuals Q(t), and individuals that have recovered/remove 
from COVID-19 R(t). Based on this consideration, the total population is 
N(t) = S(t) + E(t) + Q(t) + IA(t) + IS(t) + R(t). 

The natural human natality and mortality rates are denoted by Λ and 
μ respectively. Susceptible individuals (S) gets infected from enough 
contact with exposed individuals (E) at the rate of β or just move to 
quarantined class at the rate of τ. The exposed individuals (E) may move 
to quarantined (Q) class first or get infected without symptoms 
(asymptomatic) (IA) or with symptoms (symptomatic) (IS) at the rates of 
γ, σ and η respectively. Also quarantined individuals (Q) may be 
confirmed infected through a test with symptoms (IS) or without 
symptoms (IA) at the rates of υ and θ respectively. The asymptomatic 
infected individuals (IA) may recover at the rate of r1 and the symp-
tomatic infected individuals (IS) at the rate of r2. 

Fig. 1.1. Confirmed COVID-19 Cases-Nigeria 2020 [1].  
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Each of these classes may decrease as a result of natural mortality μ, 
while the class of individuals infected with symptoms (IS) may also 
decrease as a result of death from the disease at the rate of δ. In the 
infected class of individuals without symptoms (IA), the death as a result 
of the disease is not considered. The possibility of reinfection after re-
covery has not been considered in this model. 

Fig. 2.2, below depicted the schematic diagram showing the spread 
of COVID-19. Through the schematic diagram depicted in Fig. 2.2, a 
system of nonlinear differential equations is obtained and presented 
below (see Table 1): 

dS(t)
dt

= Λ − (τ + μ)S(t) − βS(t)E(t),

dE(t)
dt

= βS(t)E(t) − (γ + μ + η + σ)E(t),

dQ(t)
dt

= τS(t) + γE(t) − (μ + υ + θ)Q(t),

dIA(t)
dt

= σE(t) + θQ(t) − (μ + r1)IA(t),

dIS(t)
dt

= ηE(t) + υQ(t) − (δ + μ + r2)IS(t),

dR(t)
dt

= r1IA(t) + r2IS(t) − μR(t),

(2.1)  

subject to the following initial conditions: 

S(0) ≥ 0, E(0) ≥ 0, Q(0) ≥ 0, IA(0) ≥ 0,
IS(0) ≥ 0, R(0) ≥ 0. (2.2)  

3. Qualitative analysis of the proposed model 

Reproduction number is vital in the study of infection disease model 
[23]. This section presents the computation and presentation of basic 
reproduction number and invariant region for the proposed model (2.1) 
and study the  

• Locally asymptotically stability of its disease free equilibrium (see 
Theorem 3.1).  

• Unique endemic equilibrium point (see Theorem 3.2).  
• Locally asymptotically stability of its unique endemic equilibrium 

point (see Theorem 3.3). 
• Globally asymptotically stable of its endemic equilibrium (see The-

orem 3.5). 

3.1. Invariant region 

Having described the human population in the model (2.1), it is vital 
to show that the state parameters S(t),E(t),Q(t), IA(t), IS(t),R(t) are 
nonnegative for all t ≥ 0. Solution with positive initial data remains 
positive for all t ≥ 0 and are bounded. It is easy to see from systems (2.1) 
that dN(t)

dt = Λ − μN(t) − δIS(t) and supt→+∞N(t)⩽Λ
μ. As such we can study 

the system (2.1) in the following feasible region: 

Ω =
{(

S(t),E(t),Q(t), IA(t), IS(t),R(t)) ∈ R6
+ : 0⩽N(t)⩽

Λ
μ

}
. (3.1) 

(3.1) is now positive invariant in relation to (2.1). Meaning the 
proposed model (2.1) is epidemiologically well posed and all solutions 
of the system with (S(t), E(t),Q(t), IA(t), IS(t),R(t)) ∈ R6

+ remain in Ω. 

3.2. Disease free equilibrium point (DFE)

Setting the parameters E = Q = IA = IS = R = 0, the disease free 
equilibrium is obtained. Therefore, the system (2.1) indicates that the 
DFE point is given by 

DFE = (S0, 0, 0, 0, 0, 0) =
( Λ

τ + μ, 0, 0, 0, 0, 0
)
. (3.2) 

The basic reproduction number denoted by R 0 is the expected value 
of infection rate per time unit. The infection occurs in a susceptible 
population, caused by an infected individual. Based on the system (2.1), 
the article generates an equation that involves the classes of exposed and 
infected population. The disease reproduction number R 0 of the pro-
posed model (2.1) is defined herein in the infected classes. This 
threshold quantity has been described in [23,51]. In all cases, R 0 < 1 
implies that disease will decline, whereas R 0 > 1 implies that disease 
will persist within a community and R 0 = 1 requires further investi-
gation. R 0 is obtained using the next generation matrix approach [23] 
where several authors have used it. 

We implore the use of a next-generation matrix to find the basic 
reproduction number for the model (2.1). Without loss of generality, it is 
clear from the model (2.1), the article generates an equation that in-
volves the classes of the exposed population, infected population 
without symptom, and infected population with symptom as follows: 

dE(t)
dt

= βS(t)E(t) − (γ + μ + η + σ)E(t),

dQ(t)
dt

= τS(t) + γE(t) − (μ + υ + θ)Q(t),

dIA(t)
dt

= σE(t) + θQ(t) − (μ + r1)IA(t),

dIS(t)
dt

= ηE(t) + υQ(t) − (δ + μ + r2)IS(t).

(3.3) 

Referring to [51], from the equations (3.3), the study generates 

Fig. 2.2. Transmission pattern of COVID-19.  

Table 1 
Notations used and their meaning.  

Parameter Description 

τ  Transfer rate from susceptible individuals to quarantine 
β  Contact rate between susceptible individuals and exposed individuals 
δ  Mortality rate due to coronavirus in symptomatic infected individual 

class 
γ  Rate of transfer of exposed individuals to quarantine 
η  Rate of transfer of individuals from exposed class to symptomatic 

infected individuals class 
θ  Rate of quarantined individuals to asymptomatic infected individuals 

class 
μ  Natural mortality rate 
υ  Rate of transfer of quarantined individuals to symptomatic infected 

individuals class 
σ  Rate of transfer of exposed individuals to asymptomatic individuals 

class 
Λ  Recruitment (natality) rate 
r1  Recovery rate of asymptomatic infected individuals 
r2  Recovery rate of symptomatic infected individuals  
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matrix F and V , i.e. 

F =

⎛

⎜
⎜
⎝

βS(t)E(t)
0
0
0

⎞

⎟
⎟
⎠,

and 

V =

⎛

⎜
⎜
⎝

(γ + μ + η + σ)E(t)
− τS(t) − γE(t) + (μ + υ + θ)Q(t)
− σE(t) − θQ(t) + (μ + r1)IA(t)

− ηE(t) − υQ(t) + (δ + μ + r2)IS(t)

⎞

⎟
⎟
⎠.

The Jacobian matrix of F and V at DFE, denoted by F and V are 
given as follows: 

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

βΛ
τ + μ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

V =

⎛

⎜
⎜
⎝

γ + μ + η + σ 0 0 0
− γ μ + υ + θ 0 0
− σ − θ μ + r1 0
− η − υ 0 δ + μ + r2

⎞

⎟
⎟
⎠.

Therefore, FV− 1 is the next generation matrix of the model structure 
(3.3). So, as described in [23], R 0 = ρ(FV− 1) where ρ stands for spectral 
radius of the next-generation matrix FV− 1. Thus, 

FV − 1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

βΛ
A(τ + μ) 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

So, ρ(FV− 1) = βΛ
A(τ+μ) = R 0, where A = γ + μ + η + σ. 

Therefore, 

R 0 =
βΛ

(γ + μ + η + σ)(τ + μ) > 0. (3.4)  

3.3. Local stability analysis of the disease free equilibrium 

Theorem 3.1. The disease free equilibrium DFE is locally asymptotically 
stable if R 0 < 1. 

Proof. The Jacobian matrix with respect to the system (2.1) is given 
by: 

J=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

− (τ+μ)− βE − βS 0 0 0 0
βE βS− (γ+μ+η+σ) 0 0 0 0
τ γ − (μ+υ+θ) 0 0 0
0 σ θ − (μ+r1) 0 0
0 η υ 0 − (δ+μ+r2) 0
0 0 0 r1 r2 − μ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

which implies  

JDFE=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− (τ+μ) − βΛ
(τ+μ) 0 0 0 0

0
βΛ− (τ+μ)(γ+μ+η+σ)

τ+μ 0 0 0 0

τ γ − (μ+υ+θ) 0 0 0

0 σ θ − (μ+r1) 0 0

0 η υ 0 − (δ+μ+r2) 0

0 0 0 r1 r2 − μ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The characteristic polynomial of the Jacobian matrix at DFE is given 
by det(JDFE− λI)= 0, where λ is the eigenvalue and I is 6×6 identity 
matrix. Thus, the determinant of (JDFE− λI) is  

Simplifying and solving for λ, gives 

λ1 = − (τ + μ) < 0,
λ2 = − (μ + υ + θ) < 0,
λ3 = − (μ + r1) < 0,
λ4 = − (δ + μ + r2),

λ5 = − μ < 0,
λ6 = (γ + μ + η + σ)(R 0 − 1) < 0, provided that R 0 < 1.

(3.5)  

This completes the proof. ■ 

3.4. Existence of endemic equilibrium point 

In this subsection, we look at the existence of endemic equilibrium 
point. Let us denote the endemic equilibrium by E1 =
(
S*,E*,Q*, I*

A, I
*
S,R*). For simplicity, S(t) = S, E(t) = E,Q(t) = Q, IA(t) =

IA, IS(t) = IS and R(t) = R, will be used henceforth. This endemic equi-
librium always satisfies: 

0 = Λ − (τ + μ)S* − βS*E*,

0 = βS*E* − (γ + μ + η + σ)E*,

0 = τS* + γE* − (μ + υ + θ)Q*,

0 = σE* + θQ* − (μ + r1)I*
A,

0 = ηE* + υQ* − (δ + μ + r2)I*
S,

0 = r1I*
A + r2I*

S − μR*.

(3.6) 

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

− (τ + μ) − λ
− βΛ
(τ + μ) 0 0 0 0

0
βΛ − (τ + μ)(γ + μ + η + σ)

τ + μ − λ 0 0 0 0

τ γ − (μ + υ + θ) − λ 0 0 0

0 σ θ − (μ + r1) − λ 0 0

0 η υ 0 − (δ + μ + r2) − λ 0

0 0 0 r1 r2 − μ − λ

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

.
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From the first Equation of (3.6), we obtain 

S* =
Λ

γ + μ + βE* . (3.7) 

Inserting (3.7) in the second Equation of (3.6), we get 

E* =
(τ + μ)

β
(R 0 − 1). (3.8) 

Substituting E* in (3.7), yields 

S* =
γ + μ + η + σ

β
. (3.9) 

Using (3.8) and (3.9) in the third Equation of (3.6), gives 

Q* =
τβ(γ + μ + η + σ) + γ(τ + μ)

β(μ + υ + θ)
(R 0 − 1). (3.10) 

Substituting Eqs. (3.8) and (3.10), in the fourth Equation of (3.6), we 
have 

I*
A =

(τ + μ)[σ(μ + υ + θ) + γθ]
β(μ + υ + θ)(μ + r1)

(R 0 − 1). (3.11) 

Inserting Eqs. (3.8) and (3.10), in the fifth equation of (3.6) we get 

I*
S =

(τ + μ)[η(μ + υ + θ) + τβυ(γ + υ + η + σ) + γ]
β(μ + υ + θ)(δ + μ + r2)

(R 0 − 1). (3.12) 

Bringing Eqs. (3.11) and (3.12), into the sixth equation of (3.6), 
yields 

R* =
1
μ

[
[(τ + μ)[σ(μ + υ + θ) + γθ]]r1

β(μ + υ + θ)(μ + r1)

+
[(τ + μ)[η(μ + υ + θ) + τβυ(γ + υ + η + σ) + γ]]r2

β(μ + υ + θ)(δ + μ + r2)

]

(R 0 − 1).

(3.13) 

Thus, we conclude with the following theorem. 

Theorem 3.2. The system (2.1) has unique endemic equilibrium point 
given by 

E1 =
(γ + μ + η + σ

β
, a(R 0 − 1), b(R 0 − 1), c(R 0 − 1), d(R 0 − 1),

(cr1 + dr2)

μ (R 0 − 1)
)

,

whenever R 0 > 1 and 

a =
(τ + μ)

β
,

b =
τβ(γ + μ + η + σ) + γ(τ + μ)

β(μ + υ + θ)
,

c =
(τ + μ)[σ(μ + υ + θ) + γθ]

β(μ + υ + θ)(μ + r1)
,

d =
(τ + μ)[η(μ + υ + θ) + τβυ(γ + υ + η + σ) + γ]

β(μ + υ + θ)(δ + μ + r2)
.

3.5. Local stability analysis of the endemic equilibrium E1 

Theorem 3.3. The endemic equilibrium E1 is locally asymptotically stable 
if R 0 > 1. 

Proof. The Jacobian matrix with respect to the system (2.1) is given 
by: 

J=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

− (τ+μ)− βE − βS 0 0 0 0
βE βS− (γ+μ+η+σ) 0 0 0 0
τ γ − (μ+υ+θ) 0 0 0
0 σ θ − (μ+r1) 0 0
0 η υ 0 − (δ+μ+r2) 0
0 0 0 r1 r2 − μ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

which implies, 

JE1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

− (τ+μ)R 0 − (γ+μ+η+σ) 0 0 0 0
γ+μ+η+σ 0 0 0 0 0

τ γ − (μ+υ+θ) 0 0 0
0 σ θ − (μ+r1) 0 0
0 η υ 0 − (δ+μ+r2) 0
0 0 0 r1 r2 − μ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The characteristic polynomial of the Jacobian matrix at E1 is given by 
det(JE1 − λI) = 0. where λ is the eigenvalue and I is 6 × 6 identity matrix. 
Thus, 

Simplifying the characteristic polynomial (i.e making the charac-
teristic equation) and solving for λ, gives 

λ1 = − (μ + υ + θ) < 0,
λ2 = − (μ + r1) < 0,
λ3 = − (δ + μ + r2) < 0,
λ4 = − μ < 0.

(3.14)  

The quadratic λ2 +(τ+μ)R 0λ+(γ + μ + η + σ)2 has all terms positive 
and thus, its roots must all be negative. Meanings λ5,6 < 0. This com-

det(JE1 − λI) =

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

(τ + μ)R 0 − λ − (γ + μ + η + σ) 0 0 0 0
γ + μ + η + σ − λ 0 0 0 0

τ γ − (μ + υ + θ) − λ 0 0 0
0 σ θ − (μ + r1) − λ 0 0
0 η υ 0 − (δ + μ + r2) − λ 0
0 0 0 r1 r2 − μ − λ

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

.

= [λ2 +(τ + μ)R 0λ+(γ + μ + η + σ)2
][ − (μ+ υ+ θ) − λ][ − (μ+ r1) − λ][ − (δ+ μ+ r2) − λ]( − μ − λ)
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pletes the proof. ■ 

3.6. Global stability analysis of the endemic equilibrium E1 

Theorem 3.4. The system (2.1) has no periodic orbits. 

Proof. We employ the Dulac’s criterion to achieve this. Now, let X =

(S,E,Q, IA, IS,R). Taking the Dulac’s function 

G =
1

SE
,

we obtain 

G
dS
dt

=
Λ
SE

−
(τ + μ)

E
− β,

G
dE
dt

= β −
(γ + μ + η + σ)

S
,

G
dQ
dt

=
τ
E
+

γ
S
−
(μ + υ + θ)Q

SE
,

G
dIA

dt
=

σ
S
+

θQ
SE

−
(μ + r1)IA

SE
,

G
dIS

dt
=

η
S
+

υQ
SE

−
(δ + μ + r2)IS

SE
,

G
dR
dt

=
r1IA

SE
+

r2IS

SE
−

μR
SE

.

(3.15)  

Thus, 

dGX
dt

=
∂

∂S

(

G
dS
dt

)

+
∂

∂E

(

G
dE
dt

)

+
∂

∂Q

(

G
dQ
dt

)

+
∂

∂IA

(

G
dIA

dt

)

+
∂

∂IS

(

G
dIS

dt

)

+
∂

∂R

(

G
dR
dt

)

=
∂

∂S

( Λ
SE

−
(τ + μ)

E
− β
)
+

∂
∂E

(
β −

(γ + μ + η + σ)
S

)

+
∂

∂Q

(
τ
E
+

γ
S
−
(μ + υ + θ)Q

SE

)

+
∂

∂IA

(
σ
S
+

θQ
SE

−
(μ + r1)IA

SE

)

+
∂

∂IS

(
η
S
+

υQ
SE

−
(δ + μ + r2)IS

SE

)

+
∂

∂R

(
r1IA

SE
+

r2IS

SE
−

μR
SE

)

,

= −
Λ

S2E
−
(μ + υ + θ)

SE
−
(μ + r1)

SE
−
(δ + μ + r2)

SE
−

μ
SE

,

= −

(
Λ

S2E
+

δ + 4μ + υ + r1 + r2 + θ
SE

)

,

< 0.

Hence, the system (2.1) has no periodic orbit. This completes the 
proof. ■ Since Ω is positively invariant, it follows from Poincarè- 
Bendixson theorem that all solutions of the system (2.1) originate and 
remain in Ω for all t. We conclude with the following theorem: 

Theorem 3.5. The endemic equilibrium E1 for the system (2.1) is globally 
asymptotically stable whenever R 0 > 1. 

4. Fractional order model in the sense of ABC-fractional 
operator 

In the current research work, researchers have shown that mathematical 
models constructed with the aid of fractional operators are often more 
precise and reliable compared to the integer-order case due to the enhanced 
degree of freedom. In fractional-order models, the memory property allows 
more knowledge from the past to be added, which predicts and translates 
models more accurately. Recently, Atangana and Baleanu [16], introduced 
new fractional derivatives without singularity and locality. The non- 

singularity and non-locality of the kernel give a better description of the 
memory. The aforementioned operator has found wide applications to 
model dynamics processes in many well-known fields of science, engi-
neering, biology, medicine, and many other, see [31,45,5,17,] and the ref-
erences cited therein. Besides, in comparisons with classical Caputo, Caputo- 
Fabrizio, the ABC operator recorded the highest efficiency in terms of 
experimental data and numerical efficiency [42]. 

Motivated by the above-mentioned application, in this section, we 
generalize the proposed model (2.1) to fractional order in the sense of 
ABC-fractional derivative and study the existence and uniqueness of 
solutions for the generalized model using the techniques of fixed point 
theorems. Now, before we generalize the model (2.1), we recall some 
preliminaries definitions which are important throughout the section. 

Definition 4.1. ([16]) For a given function z ∈ H
1(0,T),T > 0 and 

α > 0. The fractional operator 

ABCDα
0+ z(t) =

N(α)
1 − α

∫ t

0
Eα

[ − α
1 − α(t − x)α

]
z′

(x)dx, (4.1)  

is called the ABC-fractional operator where N(r) represent the normal-
ization function and satisfies N(0) = N(1) = 1 and Eα(⋅) denotes the one- 
parameter Mittag–Leffler function of form: 

Eα(u) =
∑∞

k=0

uk

Γ(αk + 1)
. (4.2)   

Definition 4.2. ([16]) The fractional operator 

ABIα
0+ z(t) =

1 − α
N(α) z(t)+

α
N(α)Γ(α)

∫ t

0
(t − x)α− 1z(x)dx, t > 0, (4.3)  

is referred to fractional integral operator associated with ABC-fractional 
derivative. Therefore, the proposed nonlinear fractional model in the 
sense of ABC-fractional operator is of the form: 

ABCDα
0S(t) = Λα − (τα + μα)S(t) − βαS(t)E(t),

ABCDα
0E(t) = βαS(t)E(t) − (γα + μα + ηα + σα)E(t),

ABCDα
0Q(t) = ταS(t) + γαE(t) − (μα + υα + θα)Q(t),

ABCDα
0 IA(t) = σαE(t) + θαQ(t) − (μα + rα

1)IA(t),
ABCDα

0IS(t) = ηαE(t) + υαQ(t) − (δα + μα + rα
2)IS(t),

ABCDα
0R(t) = rα

1IA(t) + rα
2IS(t) − μαR(t),

(4.4)  

where ABCDα
0(⋅) is the ABC-fractional derivative of order (0 < α ≤ 1) and the 

variables are assumed to be non-negative with appropriate initial conditions. 

Remark 1. It is worth mentioning here that, the parameters are 
assumed to be non-negative and have dimension time. In this paper, the 
dimensionality consistency was taking into consideration when 
fictionalized the integer-order model as the dimension of each left-hand 
side equation carries time− α, (α > 0), whereas the right sides remains 
dimensionally time− 1. This technique was proposed by Diethelm in [24]. 

4.1. Existence and uniqueness result 

This subsection presents the existence and uniqueness of solutions of 
the proposed model using the techniques of fixed point theory. Here, we 
denote E = C ([0,T],R) the Banach space of all continuous real-valued 
function equipped with the norm defined by 

‖(S,E,Q, IA, IS,R)‖ = ‖S(t)‖+‖E(t)‖+‖Q(t)‖ +‖IA(t)‖+‖IS(t)‖+‖R(t)‖,

where 

‖S‖ = sup
t∈[0,T ]

|S(t)|, ‖E‖ = sup
t∈[0,T ]

|E(t)|, ‖Q‖ = sup
t∈[0,T ]

|Q(t)|,

I. Ahmed et al.                                                                                                                                                                                                                                   



Results in Physics 21 (2021) 103776

7

‖IA‖ = sup
t∈[0,T ]

|IA(t)|, ‖IS‖ = sup
t∈[0,T ]

|IS(t)| and ‖R‖ = sup
t∈[0,T ]

|R(t)|.

Now, applying the fractional integral operator ABIα
0+ on both sides of 

system (4.4), yields 

S(t) − S(0) = ABIα
0+{Λα − (τα + μα)S(t) − βαS(t)E(t)},

E(t) − E(0) = ABIα
0+{βαS(t)E(t) − (γα + μα + ηα + σα)E(t)},

Q(t) − Q(0) = ABIα
0+{ταS(t) + γαE(t) − (μα + υα + θα)Q(t)},

IA(t) − IA(0) = ABIα
0+{σαE(t) + θαQ(t) − (μα + rα

1)IA(t)},
IS(t) − IS(0) = ABIα

0+{ηαE(t) + υαQ(t) − (δα + μα + rα
2)IS(t)},

R(t) − R(0) = ABIα
0+{rα

1IA(t) + rα
2IS(t) − μαR(t)},

(4.5)  

which implies 

S(t) = S(0) +
1 − α
N(α)F1(t, S(t)) +

α
N(α)

1
Γ(α)

∫ t

0
(t − x)α− 1F1(x, S(x))dx,

E(t) = E(0) +
1 − α
N(α)F2(t,E(t)) +

α
N(α)

1
Γ(α)

∫ t

0
(t − x)α− 1F2(x,E(x))dx,

Q(t) = Q(0) +
1 − α
N(α)F3(t,Q(t)) +

α
N(α)

1
Γ(α)

∫ t

0
(t − x)α− 1F3(x,Q(x))dx,

IA(t) = IA(0) +
1 − α
N(α)F4(t, IA(t)) +

α
N(α)

1
Γ(α)

∫ t

0
(t − x)α− 1F4(x, IA(x))dx,

IS(t) = IS(0) +
1 − α
N(α)F5(t, IS(t)) +

α
N(α)

1
Γ(α)

∫ t

0
(t − x)α− 1F5(x, IS(x))dx,

R(t) = R(0) +
1 − α
N(α)F6(t,R(t)) +

α
N(α)

1
Γ(α)

∫ t

0
(t − x)α− 1F6(x,R(x))dx,

(4.6)  

where 

F1(t, S(t)) = Λα − (τα + μα)S(t) − βαS(t)E(t),
F2(t, E(t)) = βαS(t)E(t) − (γα + μα + ηα + σα)E(t),
F3(t,Q(t)) = ταS(t) + γαE(t) − (μα + υα + θα)Q(t),
F4(t, IA(t)) = σαE(t) + θαQ(t) − (μα + rα

1)IA(t),
F5(t, IS(t)) = ηαE(t) + υαQ(t) − (δα + μα + rα

2)IS(t),
F6(t, R(t)) = rα

1IA(t) + rα
2IS(t) − ! ˝substring − after(preceding − sibling :: comment()[starts − with(.,′ hskip′)][1],′ hskip′)˝pt > μαR(t).

(4.7) 

The kernels in Equations (4.7) satisfies the Lipschitz condition for 0⩽ 
Mi < 1, i = 1,2,…6, if and only if the nonlinear functions S(t),E(t),Q(t)
, IA(t), IS(t) and R(t) have an upper bound. Indeed, suppose S(t) and S*(t)
be two functions, then we get 

‖F1(t,S(t)) − F1(t,S*(t))‖ = ‖Λα − (τα +μα)S(t) − βαS(t)E(t)
− (Λα − (τα +μα)S*(t) − βαS*(t)E(t))‖
= ‖(τα +μα)(S*(t) − S(t))+ βαE(t)(S*(t) − S(t))‖

⩽
(
(
τα +μα)+ βα sup

t∈[0,T ]
|E(t)|

)⃦
⃦
⃦
⃦S(t) − S*(t)‖

= M1‖S(t) − S*(t)‖,
(4.8)  

where M1 =
((

τα + μα) + βαsupt∈[0,T]|E(t)|
)

. Thus, 

‖F1(t, S(t)) − F1(t, S*(t))‖⩽M1‖S(t) − S*(t)‖. (4.9) 

Repeating the same procedure as in Eq. (4.8) above, we have 

‖F2(t, E(t)) − F2(t,E*(t))‖ ⩽M2‖E(t) − E*(t)‖,
‖F3(t,Q(t)) − F3(t,Q*(t))‖ ⩽M3‖Q(t) − Q*(t)‖,
‖F4(t, IA(t)) − F4(t, I*

A(t))‖ ⩽M4‖IA(t) − I*
A(t)‖,

‖F5(t, IS(t)) − F5(t, I*
S(t))‖ ⩽M5‖IS(t) − I*

S(t)‖,
‖F6(t, R(t)) − F6(t,R*(t))‖ ⩽M6‖R(t) − R*(t)‖,

(4.10)  

where Mi (i = 1, 2,…6) are the corresponding Lipschitz constant for the 
functions Fi(⋅) for i = 1,2,…,6. 

Now, Eq. (4.6) can be written in recursive form given by 

Sn(t) = S(0) +
1 − α
N(α)F1(t, Sn− 1(t))

+
α

N(α)
1

Γ(α)

∫ t

0
(t − x)α− 1F1(x, Sn− 1(x))dx,

En(t) = E(0) +
1 − α
N(α)F2(t,En− 1(t))

+
α

N(α)
1

Γ(α)

∫ t

0
(t − x)α− 1F2(x,En− 1(x))dx,

Qn(t) = Q(0) +
1 − α
N(α)F3(t,Qn− 1(t))

+
α

N(α)
1

Γ(α)

∫ t

0
(t − x)α− 1F3(x,Qn− 1(x))dx,

IA,n(t) = IA(0) +
1 − α
N(α)F4(t, IA,n− 1(t))

+
α

N(α)
1

Γ(α)

∫ t

0
(t − x)α− 1F4(x, IA,n− 1(x))dx,

IS,n(t) = IA(0) +
1 − α
N(α)F5(t, IS,n− 1(t))

+
α

N(α)
1

Γ(α)

∫ t

0
(t − x)α− 1F5(x, IS,n− 1(x))dx,

Rn(t) = R(0) +
1 − α
N(α)F6(t,Rn− 1(t))

+
α

N(α)
1

Γ(α)

∫ t

0
(t − x)α− 1F6(x,Rn− 1(x))dx.

(4.11) 

Let us denote difference between successive components by Φi
n, i =

1,2,…6. So, 
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Φ1
n(t) = Sn(t) − Sn− 1(t) =

1 − α
N(α)(F1(t, Sn− 1(t)) − F1(t, Sn− 2(t)))

+
α

N(α)
1

Γ(α)

∫ t

0
(t − x)α− 1

(F1(x, Sn− 1(x)) − F1(x, Sn− 2(x)))dx,

Φ2
n(t) = En(t) − En− 1(t) =

1 − α
N(α)(F2(t,En− 1(t)) − F2(t,En− 2(t)))

+
α

N(α)
1

Γ(α)

∫ t

0
(t − x)α− 1

(F2(x,En− 1(x)) − F2(x,En− 2(x)))dx,

Φ3
n(t) = Qn(t) − Qn− 1(t) =

1 − α
N(α)(F3(t,Qn− 1(t)) − F3(t,Qn− 2(t)))

+
α

N(α)
1

Γ(α)

∫ t

0
(t − x)α− 1

(F3(x,Qn− 1(x)) − F3(x,Qn− 2(x)))dx,

Φ4
n(t) = IA,n(t) − IA,n− 1(t) =

1 − α
N(α)(F4(t, IA,n− 1(t)) − F4(t, IA,n− 2(t)))

+
α

N(α)
1

Γ(α)

∫ t

0
(t − x)α− 1

(F4(x, IA,n− 1(x)) − F4(x, IA,n− 2(x)))dx,

Φ5
n(t) = IS,n(t) − IS,n− 1(t) =

1 − α
N(α)(F5(t, IS,n− 1(t)) − F5(t, IS,n− 2(t)))

+
α

N(α)
1

Γ(α)

∫ t

0
(t − x)α− 1

(F5(x, IS,n− 1(x)) − F5(x, IS,n− 2(x)))dx,

Φ6
n(t) = Rn(t) − Rn− 1(t) =

1 − α
N(α)(F6(t,Rn− 1(t)) − F6(t,Rn− 2(t)))

+
α

N(α)
1

Γ(α)

∫ t

0
(t − x)α− 1

(F6(x,Rn− 1(x)) − F6(x,Rn− 2(x)))dx,

(4.12)  

taking into consideration that Sn(t) =
∑n

i=0Φ1
i (t), En(t) =

∑n
i=0Φ1

i (t),
Qn(t) =

∑n
i=0Φ1

i (t), IA,n(t) =
∑n

i=0Φ1
i (t), IS,n(t) =

∑n
i=0Φ1

i (t), Rn(t) =
∑n

i=0Φ1
i (t). Taking the norm on both side of Equations (4.12) and using 

Equations (4.9) yields  

‖Φ1
n(t)‖ =

1 − α
N(α)M1‖Φ1

n− 1(t)‖ +
α

N(α)
M1

Γ(α)

∫ t

0
(t − x)α− 1

‖Φ1
n− 1(x)‖dx,

‖Φ2
n(t)‖ =

1 − α
N(α)M2‖Φ2

n− 1(t)‖ +
α

N(α)
M2

Γ(α)

∫ t

0
(t − x)α− 1

‖Φ2
n− 1(x)‖dx,

‖Φ3
n(t)‖ =

1 − α
N(α)M3‖Φ3

n− 1(t)‖ +
α

N(α)
M3

Γ(α)

∫ t

0
(t − x)α− 1

‖Φ3
n− 1(x)‖dx,

‖Φ4
n(t)‖ =

1 − α
N(α)M4‖Φ4

n− 1(t)‖ +
α

N(α)
M4

Γ(α)

∫ t

0
(t − x)α− 1

‖Φ4
n− 1(x)‖dx,

‖Φ5
n(t)‖ =

1 − α
N(α)M5‖Φ5

n− 1(t)‖ +
α

N(α)
M5

Γ(α)

∫ t

0
(t − x)α− 1

‖Φ5
n− 1(x)‖dx,

‖Φ6
n(t)‖ =

1 − α
N(α)M6‖Φ6

n− 1(t)‖ +
α

N(α)
M6

Γ(α)

∫ t

0
(t − x)α− 1

‖Φ6
n− 1(x)‖dx.

(4.13)  

Now, we are ready to state and prove the main theorem based on the 
above results. 

Theorem 4.3. The fractional proposed model (4.4) possesses a unique 
solution for t ∈ [0,T] if the condition is satisfied  

(
1 − α
N(α)Mi +

1
N(α)

Mi

Γ(r)
Tα
)
〈
1, i = 1, 2,…, 6. (4.14)    

Proof. Since from the assumptions the functions S(t), E(t),Q(t), IA(t),
IS(t),R(t) are bounded and satisfies the Lipschitz condition. Thus, in 
view of Eq. (4.13), we get 

Fig. 5.3. The daily COVID-19 cumulative cases time series in Nigeria from 1 July to July 31, 2020, with the best-fitted curve from simulations of the proposed model 
and (b) the residuals for the best-fitted curve. 
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‖Φ1
n(t)‖ ⩽‖Sn(0)‖

(
1 − α
N(α)M1 +

1
N(α)

M1

Γ(α)T
α
)n

,

‖Φ2
n(t)‖ ⩽‖En(0)‖

(
1 − α
N(α)M2 +

1
N(α)

M2

Γ(α)T
α
)n

,

‖Φ3
n(t)‖ ⩽‖Qn(0)‖

(
1 − α
N(α)M3 +

1
N(α)

M3

Γ(α)T
α
)n

,

‖Φ4
n(t)‖ ⩽‖IA,n(0)‖

(
1 − α
N(α)M4 +

1
N(α)

M4

Γ(α)T
α
)n

,

‖Φ5
n(t)‖ ⩽‖IS,n(0)‖

(
1 − α
N(α)M5 +

1
N(α)

M5

Γ(α)T
α
)n

,

‖Φ6
n(t)‖ ⩽‖Rn(0)‖

(
1 − α
N(α)M6 +

1
N(α)

M6

Γ(α)T
α
)n

.

(4.15)  

Hence, the sequences above exist and as n⟶∞,‖Φi
n(t)‖⟶0, i = 1,2,

…6. Also, utilizing the triangular inequality for any k, Eq. (4.15) yields 

‖Sn+k(t) − Sn(t)‖⩽
∑n+k

i=n+1
Pi

1 =
Pn+1

1 − Pn+k+1
1

1 − P1
,

‖En+k(t) − En(t)‖⩽
∑n+k

i=n+1
Pi

2 =
Pn+1

2 − Pn+k+1
2

1 − P2
,

‖Qn+k(t) − Qn(t)‖⩽
∑n+k

i=n+1
Pi

3 =
Pn+1

3 − Pn+k+1
3

1 − P3
,

‖IA,n+k(t) − IA,n(t)‖⩽
∑n+k

i=n+1
Pi

4 =
Pn+1

4 − Pn+k+1
4

1 − P4
,

‖IS,n+k(t) − IS,n(t)‖⩽
∑n+k

i=n+1
Pi

5 =
Pn+1

5 − Pn+k+1
5

1 − P5
,

‖Rn+k(t) − Rn(t)‖⩽
∑n+k

i=n+1
Pi

6 =
Pn+1

6 − Pn+k+1
6

1 − P6
,

(4.16)  

where the Pi, i = 1,2,…6, are the terms within the bracket of Equations 

(4.15) and the condition 
(

1− α
N(α)Mi +

1
N(α)

Mi
Γ(α)T

α
)〈

1. Thus, by uniform 

convergent theorem the function Sn, En, Qn, IS,n, IA,n and Rn constitute 
a Cauchy sequence in E. So, applying the limit theory on the equation 
(4.11) as n→∞ shows that the limit of these sequences is the unique 
solution of the proposed model (4.4). In addition, we conclude the ex-
istence of a unique solution of the proposed model (4.4). ■ 

5. Model fitting and parameter estimation 

One of the essential mechanisms for evaluating the transmission 
dynamics of a disease is the validation of a newly developed epidemi-
ological model. The availability of real data for the underlying ailment 
contributes significantly to the completion of this task and the real data 
gives us an insight into how to determine the best values of some of the 
model’s unknown biological parameters. To this end, we employ the 
nonlinear least-squares curve fitting method with the help of “fmin-
search” function from the MATLAB Optimization Toolbox. This approach 
states that, if a theoretical model t ↦ Ξ(t, q1, q2,…, qn) is attained and 
depend on a few unknown parameters q1, q2,…, qn and a sequence of 
actual data points (t0, y0),…, (tj, yj) is also at hand then the aim is to 
obtain values of the parameters so that the error calculated can, 

E :=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑j

i=0
(Ξ(t, q1, q2,…, qn) − yi)

2

√
√
√
√ , (5.1)  

attain a minimum. 12 biological parameters are associated with the 
proposed model. Some of these parameters have been assumed while 
some have been best fitted (see Fig. 5.3). The initial conditions for the 
state variables are S(0) = 0.5, E(0) = 0.2, Q(0) = 0.1, IA(0) = 0.2,
IS(0) = 0.1 and R(0) = 0 (see Table 2). 

5.1. Sensitivity analysis 

In this subsection, the concept of sensitivity analysis is used to 
discover the robust significance of the generic parameters present in the 
basic reproduction number R 0. Furthermore, both the analytical and 
numerical values of the R 0 parameters are derived from precise as-

Table 2 
Baseline values of the parameters used in the model (2.1).  

Fitted parameter Value (Range) Units/remarks Sources 

τ  0.0002  day− 1  Fitted 

β  0.0805  day− 1  Fitted 

δ  1.6728e − 5  day− 1  Fitted 

γ  2.0138e − 4  day− 1  Fitted 

η  0.4478  day− 1  Assumed 

θ  0.0101  day− 1  Assumed 

μ  0.0106  day− 1  Fitted 

υ  3.2084e − 4  day− 1  Fitted 

σ  0.0668  day− 1  Assumed 

Λ  0.02537  day− 1  Assumed 

r1  5.7341e − 5  day− 1  Assumed 

r2  1.6728e − 5  day− 1  Assumed  

Table 3 
The elasticity indices for R 0 = 1.703052076 to the parameters of the model 
(2.1).  

Parameter Baseline value Elasticity index 

Λ  0.02537  1  
β  0.0805  1  
τ  0.0002  − 0.1851851852e − 1  
γ  2.0138e − 4  − 0.3832879160e − 3  
η  0.4478  − 0.8523007686  
σ  0.0668  − 0.1271408918  
μ  0.0106  − 1.001656533   

Fig. 5.4. Elasticity indices for significance of parameters in R 0.  
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sumptions using parameter values. If and only if the dynamics follow the 
model (2.1), the analytical expressions obtained can be used to shed 
some light on how to track the model’s onset in variant locations. The 
threshold value R 0 is a quantity known to be the primary way of 
reducing and aborting the ailment spread by reducing the number to less 
than unity. The sensitivity index technique is used to measure the most 
sensitive parameters in the model, those with the positive sign are 
considered to be highly and proportionally sensitive to the value of R 0 
while those with the negative sign are less sensitive to decreasing R 0 
and the other category is neutrally sensitive (with zero relative sensi-
tivity). The cause of the transmission of the infringement is commonly 
recognized to be directly linked to the specific reproduction number R 0. 
The R 0 elasticity indices is given by Eq. (3.4): 

ϒR 0
Pi

=
∂R 0

∂Pi
×

Pi

R 0
, (5.2)  

where R 0 denotes the basic reproduction ratio and Pi is as stated above. 
Following the described formula, we reach: 

ϒΛ = 1,

ϒβ = 1,

ϒτ = −
τ

τ + μ,

ϒγ = −
γ

γ + μ + η + σ,

ϒη = −
η

γ + μ + η + σ,

ϒσ = −
σ

γ + μ + η + σ,

ϒμ = μ (γ + μ + η + σ)(τ + μ)
(

−
Λβ

(γ + μ + η + σ)2
(τ + μ)

−
Λβ

(γ + μ + η + σ)(τ + μ)2

)

Λ− 1β− 1.

(5.3) 

The numerical values indicating the relative significance of R 0 are 
given in Table 3. Some parameters are found to be positive while some 
are negative. A positive relationship for the parameters implies that an 
increase in that parameter’s values will have a major effect on the fre-
quency of the ailment spread. While a negative relationship means that 
an increase in the importance of these parameters would help to 

Fig. 5.5. Profiles for behavior of each state variable for the classical version of the model.  
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Fig. 5.6. Profiles for behavior of each state variable for the ABC version of the fractional model.  
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Fig. 5.7. Comparison of each state variables for classical and fractional order.  
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decrease the violence of the disease. The physical outlook of the nu-
merical signs stated in Table 3 is depicted in Fig. 5.4. 

5.2. Numerical simulations 

To gain insight into the behavior of the solutions, a numerical so-
lution is needed for both the classical order and the proposed fractional- 
order model as it involves a nonlinear equation. For this task, we used 
the recent numerical scheme proposed by Toufik and Atangana in [49]. 
The numerical scheme for the proposed model (4.4) used in the present 
analysis is presented by: 

S(tk+1) = S(t0) +
1 − α
N(α)F1(tk, S(tk))

+
α

N(α)
∑k

m=0

[
hαF1(tm, S(tm))

Γ(α + 2)
[(k + 1 − m)

α
(k − m + 2 + α)

− (k − m)
α
(k − m + 2 + 2α)]

−
hαF1(um− 1, S(tm− 1))

Γ(α + 2)
[(k + 1 − m)

α+1

− (k − m)
α
(k − m + 1 + α)]].

(5.4)  

E(tk+1) = E(t0) +
1 − α
N(α)F2(tk,E(tk))

+
α

N(α)
∑k

m=0

[
hαF2(tm,E(tm))

Γ(α + 2)
[(k + 1 − m)

α
(k − m + 2 + α)

− (k − m)
α
(k − m + 2 + 2α)]

−
hαF2(tm− 1,E(tm− 1))

Γ(α + 2)
[(k + 1 − m)

α+1

− (k − m)
α
(k − m + 1 + α)]].

(5.5)  

Q(tk+1) = Q(t0) +
1 − α
N(α)F3(tk,Q(tk))

+
α

N(α)
∑k

m=0

[
hαF3(tm,Q(tm))

Γ(α + 2)
[(k + 1 − m)

α
(k − m + 2 + α)

− (k − m)
α
(k − m + 2 + 2α)]

−
hαF3(tm− 1,Q(tm− 1))

Γ(α + 2)
[(k + 1 − m)

α+1

− (k − m)
α
(k − m + 1 + α)]].

(5.6)  

IA(tk+1) = IA(t0) +
1 − α
N(α)F4(tk, IA(tk))

+
α

N(α)
∑k

m=0

[
hαF4(tm, IA(tm))

Γ(α + 2)
[(k + 1 − m)

α
(k − m + 2 + α)

− (k − m)
α
(k − m + 2 + 2α)]

−
hαF4(tm− 1, IA(tm− 1))

Γ(α + 2)
[(k + 1 − m)

α+1

− (k − m)
α
(k − m + 1 + α)]].

(5.7)  

IS(tk+1) = IS(t0) +
1 − α
N(α)F5(tk, IS(tk))

+
α

N(α)
∑k

m=0

[
hαF5(tm, IS(tm))

Γ(α + 2)
[(k + 1 − m)

α
(k − m + 2 + α)

− (k − m)
α
(k − m + 2 + 2α)]

−
hαF5(tm− 1, IS(tm− 1))

Γ(α + 2)
[(k + 1 − m)

α+1

− (k − m)
α
(k − m + 1 + α)]].

(5.8)  

R(tk+1) = R(t0) +
1 − α
N(α)F6(tk,R(tk))

+
α

N(α)
∑k

m=0

[
hαF6(tm,R(tm))

Γ(α + 2)
[(k + 1 − m)

α
(k − m + 2 + α)

− (k − m)
α
(k − m + 2 + 2α)]

−
hτF6(tm− 1,R(tm− 1))

Γ(α + 2)
[(k + 1 − m)

α+1

− (k − m)
α
(k − m + 1 + α)]].

(5.9) 

To fit the model to the reality of the pandemic, we used the daily 
cases of the spread of the disease in Nigeria. For this study and for the 
current situation in the world we are only interested in infected in-
dividuals as the week’s pass. From Figs. 5.5–5.7, we observed that both 
population of infected individuals IS and IA have been declining as weeks 
pass which may not be unconnected to existing government restrictions 
on movement and other contact activities. Not only that, there is a 
possibility that the government has put in place a public health educa-
tion system that made the population take safety measures. This further 
confirmed the result obtained from the fact that a decrease in contact 
among the population plays a vital role in curtailing the spread of the 
disease. 

The behavior of the system further confirmed the current situation in 
Nigeria. Both the classical and fractional differential equations indicate 
that the disease is declining with a very high number of recovery. It is 
therefore easy to understand that in Nigeria restriction on social contact 
can work wonders in decreasing the number of infected individuals in 
addition to quarantine and testing. Meaning it should be of particular 
interest for all that in the fight against the pandemic is the exposure as a 
result of contact with infected individuals especially that there those 
who are asymptomatic (IA). Equally important, there is also a strong 
agreement between the classical model and the fractional model as seen 
in Figs. 5.5 and 5.6. 

6. Conclusion 

In this current work, we developed a simple mathematical model to 
investigate the transmission and control of the novel coronavirus disease 
(COVID-19) from human to human. Principles drawn from the literature 
of mathematical epidemiology have been used to model how individuals 
are exposed and infected with the disease and their possible recovery. 
The mathematical analysis was done using both the ordinary differential 
equation (ODE) and the fractional differential equation. 

It is important for health practitioners and the world at large to 
understand and predict infected individuals for health concern 
arrangement of the citizens and to control its spread rate with restricted 
supply. The data used in the simulation is based on the disease spread in 
Nigeria. Positivity of the model is established and the basic reproduction 
number, R 0 is obtained for the model. It is observed that when R 0 < 1 
the disease-free equilibrium is locally asymptotically stable otherwise is 
unstable. The behavior of the system further confirmed the current sit-
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uation in Nigeria. Both the classical and fractional differential equations 
indicate that the disease is declining with a very high number of re-
covery. It is therefore easy to understand that in Nigeria restriction on 
social contact can work wonders in decreasing the number of infected 
individuals in addition to quarantine and testing. Meaning it should be 
of particular interest for all that in the fight against the pandemic, the 
exposure as a result of contact with infected individuals especially that 
there those who are asymptomatic (IA), be curtail. Equally important, 
there is also a strong agreement between the classical model and the 
fractional model as seen in Figs. 5.5 and 5.6. Also the endemic equi-
librium E1 exist and globally stable if R 0 > 1. This means that the dis-
ease may persist in society. The sensitivity analysis of R 0 concerning the 
parameters shows that the most sensitive parameter of our model 
structure that represents the chance of transmission is the contact rate 
between susceptible persons and exposed persons. It has the most 
dominant sensitivity to increase the endemicity of the disease while the 
rate of transfer of individuals to symptomatic class decreases the ende-
micity of the disease. Also, using the techniques of fixed point theorems, 
the existence and uniqueness of solutions are presented. 

Furthermore, given that the non-local (fractional order derivatives 
and integral) operator is better able to predict the future and better fit 
the experimental data compared to classical order derivatives and in-
tegrals, we have generalized the model to a fractional-order model in the 
sense of the Atangana-Baeanu derivative. Based on the actual data on 
the number of infected people in Nigeria and the best fitting techniques, 
we have obtained some of the values of the model’s unknown biological 
parameters, which successfully captured the COVID-19 pattern for the 
case α = 1. Therefore, our results of the ODE form of the model present 
the situation in Nigeria and with this, we may conclude that authorities 
and health practitioners in Nigeria need to work hard to ensure that the 
contact between the exposed individual and susceptible individuals is 
minimized. This calls for strict social distance and quarantine. 
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disease control and Word heath organization, https://ncdc.gov.ng, and 
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